
SEPnkA: Simple, Efficient P(n,k) Algorithm
Alistair A. Israel
aisrael@gmail.com

Abstract
Drawing heavily from “SEPA: A Simple, Efficient Permutation Algorithm” by Jeffrey A. Johnson,
this paper adapts and extends Johnson's algorithm to generate all permutations of n items taken k at
a time, in lexicographic order.

Introduction
Jeffrey A. Johnson's SEPA: A Simple, Efficient Permutation Algorithm is indeed a fast and simple
way to generate all the permutations of n items or P(n) in lexicographic order. In this article, we
describe a similar algorithm for generating permutations of n items taken k at a time, which we
denote as P(n, k).

SEPA Explained
Johnson discovered that a set of logical steps could be taken from one permutation to the next.
Repeatedly calling the algorithm on the last output obtained generates all permutations in sorted
order.

It works by first scanning for the rightmost ascent or pair of numbers where the first number is less
than the one immediately after it.

Table 1: P(5)17..24 with rightmost ascents highlighted.
Pi a0 a1 a2 a3 a4

… …
17 0 3 4 2 1
18 0 4 1 2 3
19 0 4 1 3 2
20 0 4 2 1 3
21 0 4 2 3 1
22 0 4 3 1 2
23 0 4 3 2 1
24 1 0 2 3 4
… …

If no ascent is found, then all numbers are in descending order and this is the last, lexicographic
permutation.

Otherwise, the number at the start of the ascent is swapped with the smallest higher number to its
right.

mailto:aisrael@gmail.com
http://en.wikipedia.org/wiki/Permutation#Ascents.2C_descents_and_runs
http://www.freewebs.com/permute/soda_submit.html
http://www.freewebs.com/permute/soda_submit.html

Table 2: P'(5)17..24 after swaps (in red). Highlighted cells are about to be reversed.
 P'i a0 a1 a2 a3 a4

… …
17' 0 4 3 2 1
18' 0 4 1 3 2
19' 0 4 2 3 1
20' 0 4 2 3 1
21' 0 4 2 3 1
22' 0 4 3 2 1
23' 1 4 3 2 0
24' 1 0 2 4 3
… …

Finally, all the numbers to the right (which will be in descending order) are 'flipped' or reversed (to
ascending order). The resulting array is the next permutation.

P(n) to P(n,k)
To begin generating P(n,k), let's take a look at the first few permutations P(5,3) and compare this
with P(5):

Table 3: P(5, 3)0...5

Pi a0 a1 a2

0 0 1 2
1 0 1 3
2 0 1 4
3 0 2 1
4 0 2 3
5 0 2 4
… …

Table 4: P(5)0..10

Pi a0 a1 a2 a3 a4

0 0 1 2 3 4
1 0 1 2 4 3
2 0 1 3 2 4
3 0 1 3 4 2
4 0 1 4 2 3
5 0 1 4 3 2
6 0 2 1 3 4
7 0 2 1 4 3
8 0 2 3 1 4
9 0 2 3 4 1
10 0 2 4 1 3
… …

If we look carefully at the first 3 values of P(5), a0, a1 and a2, we actually find P(5, 3). Except, to get
P(5, 3) from P(5) we need to 'skip' a few permutations.

Table 5: P(5) with P(5, 3) highlighted

P(5)i a0 a1 a2 a3 a4

0 0 1 2 3 4
1 0 1 2 4 3
2 0 1 3 2 4
3 0 1 3 4 2
4 0 1 4 2 3
5 0 1 4 3 2
6 0 2 1 3 4
7 0 2 1 4 3
8 0 2 3 1 4
9 0 2 3 4 1
10 0 2 4 1 3
… …

Basically, we can safely 'skip' all permutations in P(5) that don't permute the first 3 positions. For
purposes of discussion, we designate the kth or 3rd position, a2 as the 'edge'.

Table 6: P(5) where a0, a1 and a2 change. The 3rd position, or a2 is the 'edge'

Pi a0 a1 a2 a3 a4

0 0 1 2 3 4
2 0 1 3 2 4
4 0 1 4 2 3
6 0 2 1 3 4
8 0 2 3 1 4
10 0 2 4 1 3
12 0 3 1 2 4
14 0 3 2 1 4
16 0 3 4 1 2
18 0 4 1 2 3
20 0 4 2 1 3
… …

Another way to look at this is that in generating P(n) using Johnson's SEPA, we look for the
rightmost ascent. In P(n, k) generation, we're only interested in ascents at the 'edge' or to the left of
the 'edge'.

We first assume that the edge contains our 'ascent' and look for the next higher number to the right
of the edge.

Table 7: P(5) → P(5, 3), showing the edge about to be swapped with the next higher number

Pi a0 a1 a2 a3 a4

0 0 1 2 3 4

…

0 1 3 2 4
0 1 4 2 3
0 2 1 3 4
0 2 3 1 4
0 2 4 1 3
0 3 1 2 4
0 3 2 1 4
0 3 4 1 2
0 4 1 2 3
0 4 2 1 3
0 4 3 1 2

…

If all numbers to the right of the edge are smaller, then we know that the ascent must be to the left
of the edge.

However, unlike with regular P(n) generation, at this point all numbers to the right of the edge will
be in ascending order. We know this since we began with all numbers in ascending order, and all
our operations at this point simply swap the value at the edge with the next higher number.

Fortunately, by simply reversing everything to the right of the edge we return to a state similar to
P(n) where all values to the right of the actual ascent are in descending order. We can now proceed
as with the regular SEPA.

Table 8: P(5, 3), showing the edge about to be swapped, or, after reversal, the actual ascent and
values to swap (as in SEPA)

Pi a0 a1 a2 a3 a4

0 0 1 2 3 4

…

0 1 3 2 4
0 1 4 3 2
0 2 1 3 4
0 2 3 1 4
0 2 4 3 1
0 3 1 2 4
0 3 2 1 4
0 3 4 2 1
0 4 1 2 3
0 4 2 1 3
0 4 3 2 1

…

A Simple, Efficient Algorithm for Generating P(n, k)
This leads us to the adapted algorithm for generating permutations of n items taken k at a time, in
lexicographic order.
def a = { 0, 1, 2 … n – 1 }
def edge = k – 1

// find j in (k…n-1) where aj > aedge

j = k
while j < n and aedge >= aj,
 ++j

if j < n {
 swap aedge, aj

} else {
 reverse ak to an-1

 // find rightmost ascent to left of edge
 i = edge - 1
 while i > 0 and ai >= ai+1,
 --i

 if i < 0,
 // no more permutations
 return 0

 // find j in (n-1…i+1) where aj > ai

 j = n - 1
 while j > i and aj < ai

 --j

 swap ai, aj

 reverse ai+1 to an-1

}

output a0, a1 … ak-1

SEP(n,k) Algorithm Illustrated
To show how the algorithm works, let's step through the major operations showing the state of the
array a at each step.

Table 9: P(5, 3). a2 is the 'edge'. Red values are about to be swapped, yellow cells are about to be
reversed.

Pi a0 a1 a2 a3 a4 Step
0 0 1 2 3 4 swap a2, a3

1 0 1 3 2 4 swap a2, a4

2
0 1 4 2 3 reverse a3..4

0 1 4 3 2 swap a1, a4

0 2 4 3 1 reverse a2..4

3 0 2 1 3 4 swap a2, a3

4 0 2 3 1 4 swap a2, a4

5
0 2 4 1 3 reverse a3..4

0 2 4 3 1 swap a1, a3

0 3 4 2 1 reverse a2..4

6 0 3 1 2 4 swap a2, a3

7 0 3 2 1 4 swap a2, a4

8
0 3 4 1 2 reverse a3..4

0 3 4 2 1 swap a1, a2

0 4 3 2 1 reverse a2..4

9 0 4 1 2 3 swap a2, a3

10 0 4 2 1 3 swap a2, a4

11
0 4 3 1 2 reverse a3..4

0 4 3 2 1 swap a0, a4

1 4 3 2 0 reverse a1..4

12 1 0 2 3 4 swap a2, a3

… …

	Abstract
	Introduction
	SEPA Explained
	P(n) to P(n,k)
	A Simple, Efficient Algorithm for Generating P(n, k)
	SEP(n,k) Algorithm Illustrated

